WHIMS The Women's Health Initiative Memory Study

Sally Shumaker, Ph.D. PI Stephen Rapp, Ph.D., Co-PI Mark Espeland, Ph.D., Co-PI Claudine Legault, Ph.D. Maggie Daily, M.P.H., Ph.D. and WHI/NHLBI Investigators & Staff WHI/MS Clinic staff WHI/MS Participants WHIMS External Advisors

- Support provided by:
 - Wyeth pharmaceuticals (initial WHIMS)
 - NHLBI
 - NIA

WHIMS Specific Aims

- PRIMARY: Does HT (E + P and Ealone) reduce incidence of:
 - Dementia (any cause)?
 - Dementia caused by Alzheimer disease (AD)?
- SECONDARY:
 - Improve global cognition?
 - Improve MCI?
 - Slow progression of disease?

What were we thinking? Remember when... A quick reality check

- We thought HT both prevented AD and slowed its progression – regardless of women's "underlying neuronal health status"
- Women were initiating HT many for the first time – all the way into their 70s
- Placebo controlled trials of HT were considered unethical because we "already knew HT was beneficial"

WHI Hormone Program Design

CEE=conjugated equine estrogen; MPA=medroxyprogesterone acetate.
*Initially: CEE only (n=331), CEE + MPA, or placebo.
(CEE only was subsequently converted to CEE + MPA).
WHI Study Group. *Control Clin Trials*. 1998;19:61-109.

WHIMS

- Approximately 7,500 non-demented women aged 65-80 years with and without a uterus
- 39 clinical centers and WHI CCC

WHIMS Methodology

returns annually for 3MSE, NP battery and questionnaires

NP=neuropsychological; PD=probable dementia; MCI=mild cognitive impairment; ND=no dementia.

Shumaker SA, et al. *JAMA*. 2003;289:2651-2662.

Flow of Participants Through the WHIMS Estrogen-Alone Trial and the Combined Estrogen-Alone and Estrogen + Progestin Trials

Shumaker, S. A. et al. JAMA 2004;291:2947-2958.

WHIMS: Selected Data

	E+P	Placebo	E-alone	Placebo
N	2229	2303	1464	1483
% 65-69 yr	47	47	44	45
% 70-74 yr	35	36	38	35
<u>></u> 75	18	17	18	21
Mean yr. follow-up	4.01	4.06	5.16	5.20
# dementia cases	40	21	28	19
Rate per 10,000 per-yr	45	22	37	25
# MCI cases	56	55	76	58/

Cumulative Hazards Ratios for a Diagnosis of Probable <u>Dementia and Mild Cognitive</u> <u>Impairment</u> for Women on Estrogen + Progestin

Shumaker, S. A. et al. JAMA 2003;289:2651-2662.

Times to Probable <u>Dementia</u> for Women Taking <u>Estrogen Alone vs Placebo or Estrogen and Estrogen + Progestin</u> Combined vs Placebo

Shumaker, S. A. et al. JAMA 2004;291:2947-2958.

Times to the First Occurrence of the Composite End Point of <u>Probable Dementia or Mild</u> <u>Cognitive Impairment</u> for Women Taking <u>Estrogen Alone vs Placebo or Estrogen and</u> <u>Estrogen + Progestin</u> Combined vs Placebo

Shumaker, S. A. et al. JAMA 2004;291:2947-2958.

Fitted Mean Modified Mini-Mental State Examination Scores for Estrogen-Alone and Estrogen Plus Progestin Trials and Pooled Trials

Espeland, M. A. et al. JAMA 2004;291:2959-2968.

Odds Ratio (95% Confidence Intervals) for Various Magnitudes of Modified Mini-Mental State Examination Score Changes From Baseline (Across All Follow-up Visits): Estrogen Plus Progestin vs Placebo

Rapp, S. R. et al. JAMA 2003;289:2663-2672.

Distribution of Changes in Modified Mini-Mental State Examination Scores From Baseline Between the Estrogen-Alone and Pooled Trials

Espeland, M. A. et al. JAMA 2004;291:2959-2968.

Questions raised by WHIMS results:

- What mechanism(s) might account for the increased risk of dementia?
- Is this risk accumulative and/or sustained over time?
- What effect does cessation of HT have on cognition and risk of dementia?

Potential of WHIMS to Address Critical Questions

- Large, heterogeneous population of women followed for extended period
- Well-characterized clinically, demographically and cognitively w/repeated cognitive measures
- Excellent data on hormone exposure over time—as well as other "confounding" therapies
- Well-trained, and certified staff

Where do we go from here?

- Further Analyses w/in the current WHIMS data set
 - Increasing precision on MCI
 - Enhancing outcomes ascertainment
 - The MRI study
- WHIMS Extension what else will we learn?
- Other possible new WHIMS studies
- Limitations of WHIMS

MCI: Limitations and Promise

- WHIMS: risk of MCI alone not related to HT
- 10-15% MCIs convert to dementia each year. (Artero et al. Acta Psychiatr Scand 2003; 390-393; Petersen et al. Arch Neurol 1999; 56:303-308)
- Amnestic MCI subtype associated with other risk factors (Lopez et al., Arch Neurol 2003; 1394-1399)
- Does HT affect risk of Amnestic MCI subtype?

Precision in MCI Assessment

- WHIMS dataset provides unique opportunity to develop more sensitive and specific operational definitions of MCI subtypes w/potential to:
 - Test possible differential treatment effects on MCI subtypes (e.g. amnesic)
 - Determine association of MCI with primary outcome increase predictive validity of MCI
- The psychometric refinement of MCI, coupled with further MCI/HT analyses have the potential for producing a cost-effective surrogate endpoint needed to test
 - New treatments for dementia
 - Validity of other surrogates (e.g. imaging techniques)

Enhancing Outcomes Ascertainment in WHIMS

- Development & testing of the supplemental case ascertainment protocol (SCAP)
 - Phone interview of proxy (friend or family member) for "at risk" women
 - Deceased WHIMS ppts (~700)
 - Women who have missed recent annual visits (~200)
 - Dementia questionnaire administered by certified interviewers at WHIMS CCC
 - WHIMS central adjudication process

Potential of SCAP

- Enhances number of cases of MCI and dementia and, therefore, statistical power for further analyses
- Can use WHIMS data set to advance psychometric properties (e.g. predictive validity) of SCAP – an alternative (and more efficient) cognitive testing protocol for large OS and RCT
- Cognitive decline and dementias take women out of RCTs selectively – valid SCAP provides mechanism for addressing inherent deselection bias
- Provides potential opportunity to assess effects of HT on cognitive decline/dementia in "younger" WHI women

The WHIMS MRI Study

Rationale for the WHIMS-MRI Study

- Stroke is the 3rd leading cause of death in the United States
- Subclinical (silent) CVD is substantially more prevalent than clinical CVD and begins in middle age
- Hormone Therapy increases the risk of clinical stroke in women (WHI, 2002; Wassertheil-Smoller, 2002; WHI, 2004)

WHMS-MRI: Overall Objective

To mount a cross-sectional MRI study in approximately 1450 women previously enrolled in the Women's Health Initiative Memory Study (WHIMS) to evaluate the impact of HT on Subclinical Neurological Pathology.

WHIMS MRI: Primary Objective

To establish whether the prevalence of silent infarcts, detected by a standard MRI protocol, is increased among women who had been assigned to HT, relative to placebo during the WHIMS clinical trials.

WHIMS MRI: Secondary Objectives

- Contrast the relative effects of prior assignment of estrogen alone on the prevalence of silent infarcts with those associated with estrogen plus progestin therapy.
- Establish whether the prevalence of white matter grade (WMG) abnormalities and estimates of hippocampal, ventricular, and whole brain volumes vary between women assigned to HT versus placebo

WHIMS MRI: Secondary Objectives (contd.)

- Examine whether the increased risk of probable dementia and minor cognitive impairment (MCI) associated with HT is conveyed through the development of vascular and/or white matter abnormalities.
- Examine whether sub-clinical abnormalities on MRI predict conversion from MCI to dementia.
- Examine whether a dose-response relationship exists between duration of exposure to HT and sub-clinical abnormalities.

WHIMS-MRI Inclusion Criteria

- Any WHIMS participant, regardless of
 - Prior adherence during WHIMS/WHISCA
 - Current cognitive status
 - Participation in WHI-Extension and/or WHIMS Extension
- Both E-Alone and E+P trials
- Fully informed consent to participate and to allow data sharing (HIPAA)

Timeline

- WHIMS recruitment: 5/96 to 12/99
- WHIMS E+P termination, 7/02; Mean on-trial follow-up, 4.0 yrs
- WHIMS E-Alone termination, 2/04;
 Mean on-trial follow-up, 5.2 yrs
- WHIMS-MRI scans: 9/04-12/05

What else can we learn from WHIMS?

What effect does cessation of HT have on cognition and risk of dementia?

WHIMS Extension Study

- Continue annual assessments (3MS) and neuroclinical evaluations and case ascertainment
- PRIMARY OBJECTIVE: Determine effect of *cessation* of HT on cognition and incidence of dementia and MCI.

Other Opportunities with WHIMS

- Identification and assessment of other hypothesized mechanisms for treatment effects
- Association of biomarkers w/MCI; dementias
- Further sub-analyses of existing data; "drilling down" into data
- Analyses w/WHISCA data & Co-STAR

Another opportunity with WHIMS Paradigm: Testing the effects of HT on cognition in the younger WHI women

Strengths

- Committed cohort of participants
- Well-characterized population w/r to HT exposure, clinical status over time, demographics, etc.
- Diverse population
- Trained and certified staff on cognitive measures
- Strong cognitive assessment protocol in place
- Simplified outcomes ascertainment (SCAP)

Weaknesses

- No baseline cognitive assessments
- Differential drop-out rates over time
- Priority of this type of analysis among competing priorities w/in WHI -- resources

Questions WHIMS Cannot Answer

- Effects of hormone therapy on cognitive decline and dementia initiated in the younger (pre and peri-menopausal) woman
- Effects of alternative hormone therapies
 - Dosages
 - Types
 - Mode of administration
 - Cyclical vs continuous

Challenges to the "perfect" HT/cognition RCT:

- When do we randomize pre-, peri-, post menopausal
 - If AD is pre-clinically present for up to 15 years prior to diagnosis just how far back do we go?
- IF HT promotes cognitive health in the neurologically in tact woman – and promotes decline and dementia in the neurologically "damaged" woman, then:
 - How do we guarantee the neurological health of our baseline cohort?
 - How do we know when this neurologically in tact cohort becomes damaged and the potential benefit crosses to harm – that is, how long do we "treat" women?
- How long would we have to follow a younger cohort to reliably assess treatment effects on "hard" (non-surrogate) outcomes?

Challenges to the "perfect" HT/cognition RCT, cont. . .

- How many factors would we have to vary to be confident we captured the full range of potential beneficial therapies: dose (2-3) X mode (2-3) X menopausal stage (3) X drug (2) X continuous vs cyclical (2) Etc.
- How long will our current choices be relevant how can we be confident that secular trends, new HT formulations, and/or new non-hormonal treatments won't make our choices irrelevant before the study is done?
- Resources
 - Number of women required
 - Cost
- Ethics we can't ignore the known risks associated w/HT even in younger women
 - Evidence of presumed benefit must be substantially stronger than is currently the case to offset risks – regardless of how small that risk may appear to be

Finally....

- If we accept the hypothesis that HT exacerbated underlying, pre-existing disease in the WHIMS women – what would we predict for rates of transitioning to dementia?
 - What is the prevalence of sub-clinical dementia in women the WHIMS baseline cohort?
 - What is the effect size expected for accelerating the dementia disease process? And, therefore,
 - How many cases of dementia should we have seen?